Contribution of Chemical Constituents to Visibility Reduction During the California Regional PM10/PM2.5 Air Quality Study Steven Heisler, ENSR International Camarillo, CA Presented at CRPAQS Data Analysis Workshop, March 10, 2004 Sacramento, CA #### Approach - Applied light extinction efficiencies to 24-hour average particulate matter chemical composition data to estimate constituent contributions to the light extinction coefficient - Constituents included: Fine Soil = 1.89[Al] + 2.14[Si] +1.4[Ca] + 1.43[Fe] NH₄NO₃ = 1.29[NO₃⁻] (NH₄)₂SO₄ = 1.375[SO₄⁼] Organic Compounds (OCM) = 1.4[OC] Elemental Carbon (EC) = measured EC #### Light Extinction Efficiencies - Used 10 m²/g for light absorption by EC - Evaluated light scattering efficiencies developed for IMS95 and for IMPROVE (Interagency Monitoring of Protected Visual Environments) with 24-hour average chemical composition, particle light scattering coefficient (b_{sp}), and relative humidity (RH) data from Fresno First Street (FSF) site - Chose FSF data because only site with open-air, unheated nephelometer (NGN-2) #### IMS95 and IMPROVE Constituent Light Scattering Efficiencies | Constituent | IMS95 | IMPROVE | |---|---------------------------|---------| | | (m²/g) | (m²/g) | | Fine Soil | 2 | 1 | | NH ₄ NO ₃ | 2.1/(1-RH) ^{0.7} | 3f(RH) | | (NH ₄) ₂ SO ₄ | 2.1/(1-RH) ^{0.7} | 3f(RH) | | OC | 2.8/(1-RH) ^{0.2} | 4 | #### Treatment of Hourly RH and b_{sp} - Calculated 24-hour average f(RH) and b_{sp} - Excluded hours with RH above 95% to avoid fog - Excluded days with less than 18 hours in average # Results with IMS95 and IMPROVE Efficiencies are Well Correlated, but IMS95 is Lower #### Measured b_{sp} is Under-Predicted #### Calculated Adjustment to 24-Hour Average IMPROVE f(RH) - Calculated "apparent" f(RH) as: (measured b_{sp} - soil b_{sp} - OCM b_{sp}) / ("dry" NH₄NO₃ b_{sp} + "dry" (NH₄)₂SO₄ b_{sp}) - Used results from linear regression of "apparent" 24hour average f(RH) vs. 24-hour average IMPROVE f(RH) #### Adjustment Improves Agreement # Comparison of Calculated b_{sp} with Radiance Research (RR) Neph. Measurements #### Agreement is Poor at Mojave Desert Sites #### Agreement is Poor at Mojave Desert Sites #### Agreement is Poor at Mojave Desert Sites ### Measured b_{sp} is Moderately Correlated with PM2.5 Mass at Desert Sites ### Reconstructed Mass is Higher than Measured Mass at Desert Sites ## Calculated Organic Compound Mass (OCM) is Frequently Higher than Measured PM2.5 Mass at Desert Sites #### Application of Light Extinction Efficiencies to SJV Sites - Applied to 11 sites with annual relative humidity and PM2.5 chemical composition data - Data available from 12/99 1/01 - Calculated f(RH) for every hour and averaged over 24-hour filter sampling periods - Excluded hours with RH above 95% to avoid fog #### Summary - Previously developed light scattering efficiencies under-predicted measured light scattering, but adjustment to f(RH) improved agreement - Calculated light scattering agrees reasonably well with RR measurements at SJV sites - Agreement is poor at Mojave Desert sites - Calculated total light extinction is highest during winter and lowest during summer - NH₄NO₃ is the largest contributor at all sites during winter and fall and at several sites during spring - Organic compounds are the highest contributor at most sites during summer ### Summary (continued) Water associated with ammonium nitrate and ammonium sulfate accounts for about 60% to 80% of calculated light extinction during winter and about 50% to 75% during fall